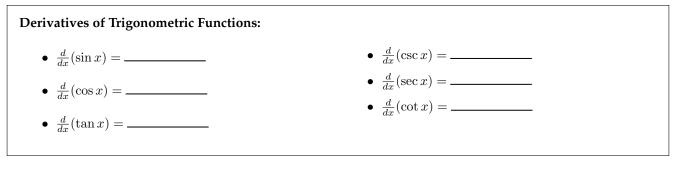

LECTURE: 3-3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Example 1: Use the graph of $y = \sin x$ to sketch a graph of y'. Guess what y' is.


Example 2: Use the graph of $y = \cos x$ to sketch a graph of y'. Guess what y' is.

Example 3: Using the derivative of $\sin x$ and $\cos x$ find derivatives of:

(a) $y = \tan x$

(b)
$$y = \csc x$$

Example 4: Find the second derivatives of the following functions:

(a) $g(t) = 4 \sec t + \tan t$. (b) $y = x^2 \sin x$.

Example 5: Find an equation of the tangent line to the curve $y = \frac{1}{\sin x + \cos x}$ at the point (0,1).

Example 6: For what values of x does the graph of $f(x) = x + 2 \sin x$ have a horizontal tangent?

Example 7: Differentiate $f(x) = \frac{\sec x}{1 - \tan x}$ and determine where the tangent line is horizontal.

Generalized Product Rule: How does the product rule genearlize to more than two functions? For example, what is the derivative of y = f(x)g(x)h(x)?

Example 8: Differentiate $y = x^2 \tan x \sec x$.

Example 9: Find the 51st derivative of $f(x) = \sin x$. Specifically, find the first four or five derivatives and look for a pattern.

Example 10: A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t) = 8 \sin t$, where *t* is in seconds and *x* is in centimeters.

(a) Find the velocity at time *t*.

(b) Find the position and velocity of the mass at time $t = 2\pi/3$. In what direction is it moving at this time?

Example 11: A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let *x* be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does *x* change with respect to θ when $\theta = \frac{\pi}{6}$.